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Subalgebras, Intervals, and Central Elements of
Generalized Effect Algebras

Zdenka RiecÏ anovaÂ1
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The relation between generalized effect algebras and D-algebras and their
subalgebras are discussed. For generalized effect algebras the notion of central
elements is introduced and some of their properties are shown.

INTRODUCTION

In the axiomatic approach to quantum mechanics the event structure of

a physical system is identified with a quantum logic as an orthomodular

lattice or poset (Varadarajan, 1968; Kalmbach, 1983; Beran, 1984; PtaÂk and

PulmannovaÂ1991). In recent years, new algebraic structures weakening the

axiomatic system of orthomodula r lattices (or posets) have been introduced
for investigations in the foundations of quantum mechanics. Some of them

are equivalent in some sense, or they are in some close connection. The

analysis of all of them is not the subject of this note. We will discuss only

relationships between D-posets, D-algebras, and effect algebras and their

generalized versions.

KoÃpka (1992) introduced a new algebraic structure of fuzzy sets, a D-
poset of fuzzy sets. A difference of comparable fuzzy sets is a primary

operation in this structure. Later, KoÃpka and Chovanec (1994), by transferring

the properties of a difference operation of a D-poset of fuzzy sets to an

arbitrary partially ordered set, obtained a new algebraic structure, a D-poset

that generalizes orthoalgebras and MV algebras.

Events of quantum logics do not describe ª unsharp measurements,º
since unsharp measurements do not have a ª yes±noº character. To include
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such events another algebraic structure was introduced by Foulis and Bennett

(1994), called an effect algebra. Unsharp orthoalgebras have been defined

by Giuntini and Greuling (1989).
Unbounded versions of effect algebras and D-posets (more precisely,

not necessary bounded posets) have also been considered (Foulis and Bennett

1994; KoÃpka and Chovanec, 1994; Kalmbach and RiecÏ anovaÂ, 1994; HeÂdlõ Â-

kovaÂand PulmannovaÂ, 1996).

1. EFFECT ALGEBRAS, D-POSETS, AND D-ALGEBRAS

In the remainder, for a partial operation % (or * ) on a set X and for a,

b, c P X if we write a % b 5 c (c * b 5 a) we mean both that a % b (c *
b) is defined and a % b 5 c (c * b 5 a).

Definition 1.1 (KoÃpka and Chovanec, 1994). Let (P, # ) be a poset with

the least element 0 and the greatest element 1. Let * be a partial binary

operation on P such that b * a is defined iff a # b. Then (P ; # , * , 0, 1)

is called a difference poset (D-poset) if the following conditions are satisfied:

(Di) For any a P P, a * 0 5 a.

(Dii) If a # b # c, then c * b # c * a and (c * a) * (c * b) 5
b * a.

Effect algebras (introduced by Foulis and Bennett, 1994) are important
for modeling unsharp measurements in Hilbert space: The set of all effects

is the set of all self-adjoint operators T on a Hilbert space H with 0 # T #
1. In a general algebraic form an effect algebra is defined as follows:

Definition 1.2. A structure (E; % , 0, 1) is called an effect algebra if 0,

1 are two distinguished elements and % is a partially defined binary operation

on P which satisfies the following conditions for any a, b, c P E:

(Ei) b % a 5 a % b if a % b is defined.

(Eii) (a % b) % c 5 a % (b % c) if one side is defined.

(Eiii) For every a P P there exists a unique b P P such that a % b 5 1.

(Eiv) If 1 % a is defined, then a 5 0.

We can easily show the following statement.

Proposition 1.3 (Cancellation properties)
(a) In a D-poset (P; # , * , 0, 1) if a # b and a # c for a, b, c P P, then

b * a 5 c * a implies b 5 c

(b) In an effect algebra (E; % , 0, 1) if a % b and a % c are defined for

a, b, c, P E, then
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a % b 5 a % c implies b 5 c

Corollary 1.4. (1) In every D-poset (P; # , * , 0, 1) the partial binary

operation % can be defined by

(EP) a % b is defined and a % b 5 c iff a # c and c * a 5 b.

(2) In every effect algebra E the partial binary operation * and the

relation # can be defined by

(PE) a # c and c * a 5 b iff a % b is defined and a % b 5 c.

Cancellation properties guarantee that % , * , and # are well defined.

Moreover, it is easy to show the following statements:

Proposition 1.5. (1) In every D-poset (P: # , * , 0, 1) the partial binary

operation % derived by (EP) fulfills axioms (Ei)±(Eiv) of an effect algebra.

(2) In every effect algebra (E; % , 0, 1) the partial binary operation *
and the partial order # defined by (PE) fulfills axioms (Di)±(Dii) of a D-poset.

A D-algebra is a generalization of a D-poset in which a partial order is

not assumed. However, if a D-algebra is equipped with a natural partial order

(derived from the partial operation * ), then it becomes a D-poset. We present

here the definition of D-algebra by Gudder (1994).

Definition 1.6. A partial algebra (P; * , 0, 1) is called a D-algebra if 0,

1 are two distinguished elements of P and * is a partially defined binary

operation on P which satisfies the following conditions for any a, b, c P P:

(Ai) a * 0 is defined and a * 0 5 a for all a P P.

(Aii) 1 * a is defined for all a P P.
(Aiii) If 0 * a is defined, then a 5 0.

(Aiv) If b * a and c * b is defined, then c * a and (c * a) * (c *
b) are defined and (c * a) * (c * b) 5 b * a.

We can easily show the following statements:

Proposition 1.7. (i) If (P; # , * , 0, 1) is a D-poset, then (P; * , 0, 1)

is a D-algebra.

(ii) If (P; * , 0, 1) is a D-algebra and we define a # b iff b * a is

defined, then the relation # is a partial order on P and (P ; # , * 0, 1) is a

D-poset.

See Gudder (1994) for the proof.

Corollary 1.8. In every. D-algebra (P; % , 0, 1) for a, b, c P P the

cancellation property b * a 5 c * a implies b 5 c is satisfied and the partial

binary operation % can be defined by



3212 RiecÏ anovaÂ

(EA) a % b is defined and a % b 5 c iff c * a is defined and c *
a 5 b.

Then (P; % , 0, 1) is an effect algebra.

2. GENERALIZED EFFECT ALGEBRAS, D-POSETS, AND D-
ALGEBRAS

Generalizations of effect algebras, D-posets, and D-algebras have been
studied by KoÃpka and Chovanec (1994) (difference posets), Foulis and Ben-

nett, 1994 (cones), Kalmbach and RiecÏ anovaÂ(1994) (abelian RI-posets and

abelian RI semigroups), and Hedlõ ÂkovaÂand PulmannovaÂ(1996) (generalized

D-posets and cancelative positive partial abelian semigroups). Hedlõ ÂkovaÂand

PulmannovaÂ(1996) proved that every generalized D-poset is an order ideal

of a suitable D-poset [thus extending previous similar results for generalized
Boolean algebras, results of Janowitz for generalized orthomodular lattices,

and of Mayet-Ippolito for (weak) generalized orthomodula r posets]. It can

be shown that all of the above-mentioned generalizations of effect algebras

(cones, abelian RI-semigroups, cancelative positive PAS) are mutually equiva-

lent algebraic structures and can be derived from generalized D-posets (deriv-

ing % from * similarly as for deriving effect algebra from D-poset) and we
will call them all generalized effect algebras. Thus their common definition

is the following:

Definition 2.1. A partial algebra (E; % , 0) is called a generalized effect
algebra if 0 P E is a distinguished element and % is a partially defined

binary operation E which satisfies the following conditions for any a, b, c P E:

(GEi) a % b 5 b % a, if one side is defined.

(GEii) (a % b) % c 5 a % (b % c), if one side is defined.

(GEiii) a % 0 5 a for all a P E.

(GEiv) a % b 5 a % c implies b 5 c (cancellation law).

(GEv) a % b 5 0 implies a 5 b 5 0.

Definition 2.2. A partial algebra (P; * , 0) is called a generalized D-
algebra (D-poset) if 0 P P is a distinguished element and * is a partially

defined binary operation on P which satisfies the following conditions for

any a, b, c P P:

(GDi) a * 0 5 a for all a P P.

(GDii) a * a 5 0 for all a P P.

(GDiii) If b * a is defined, then b * (b * a) is defined.

(GDiv) (a * b) * c 5 (a * c) * b, if one side is defined.
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(GDv) If b * a and c * b are defined, then c * a is defined.

(GDvi) If a * b and b * a are defined, then a 5 b.

(GDvii) c * a 5 b * a implies c 5 b (cancellation law).

Proposition 2.3. (1) In every generalized D-algebra (P; * , 0) the partial

binary operation % can be defined by

(GED) a % b is defined and a % b 5 c iff c * a is defined and c *
a 5 b and the partial order in P can be defined by a # b iff

b * a is defined.

(2) In every generalized effect algebra (E ; % , 0) the partial binary

operation * can be defined by

(GDE) a * b is defined and a * b 5 c iff b % c is defined and b %
c 5 a and the partial order in P can be defined by a # b iff

there exists c P P with a % c 5 b.

Cancellation laws (GEiv) and (GDvii) guarantee that % , * , and # are

well defined. Moreover, we can show the following statements:

Proposition 2.4. (1) In every generalized effect algebra (E; % , 0) the
partial binary operation * derived by (GDE) fulfills axioms (GDi)±(GDvii)

of a generalized D-algebra.

(2) In every generalized D-algebra (P; * , 0) the partial binary operation

% derived by (GED) fulfills axioms of a generalized effect algebra.

Moreover, the partial orders derived from the corresponding operations

% and * , i.e., derived one from the other by (GED), respectively (GDE),
coincide.

Proposition 2.5. (1) If (P; * , 0) is a generalized D-algebra and there is

an element 1 P P such that 1 * a is defined for all a P P, then (P; * , 0,

1) is a D-algebra (and (P; # , * , 1) with # derived by * is a D-poset).

(2) If (P; % , 0) is a generalized effect algebra and there is 1 P P such

that for all a P P there is b P P with a % b 5 1, then (P ; % , 0, 1) is an
effect algebra.

Proofs of Propositions 2.3±2.5 can be found in Hedelõ ÂkovaÂand Pulman-

novaÂ(1996) and Kalmbach and RiecÏ anovaÂ(1994). Let us mention that a

generalized D-poset is a generalized D-algebra with partial order derived

from the operation * . By the next proposition every generalized D-algebra

(every generalized effect algebra) can be embedded into a D-algebra
(effect algebra).

In the following proposition let us denote by (P*: # P*) the dual poset

to a poset (P; # P) and by a* the element of P* corresponding to a P P.

Hence, for a*, b* P P* we have a* # P*b* iff b # P a.
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Proposition 2.6 (Hedlõ ÂkovaÂand PulmannovaÂ, 1996). Let (P ; * P , 0P)

be a generalized D-algebra and let % be derived from * P by (GED). Let

a # P b iff b * P a is defined and let (P*; # P*) be the dual poset to (P; # P).
Suppose that P 5 P ø Ç P* is disjoint union and define the partial order #
and the partial binary operation * on P by the following conditions:

(1) For a, b P P, a # b iff a # P b and then we put b * a 5 b * P a.

(2) For a*, b* P P*, a* # b* iff b # P a and then we put b* * a* 5
a * P b.

(3) For a P P, b* P P*, a # b* iff b # a* iff a % P b is defined and

then we put b* * a 5 a* * b 5 (a % P b)*.

(4) For all a P P and b* P P*, a * b* is not defined (hence, b* # a
does not hold).

Then ( P ; * , 0, 1), where 0 5 0P , 1 5 0*P , is a D-algebra. Moreover,

(P, # P) is an order ideal in ( P ; # ).

Suppose now that (P; % P , 0P) is a generalized effect algebra. Let (P;

* P , 0P) be a generalized D-algebra derived from that effect algebra by the

condition (GDE). Let P 5 P ø Ç P* and ( P ; * , 0, 1) be a D-algebra obtained

by Proposition 2.6. Then P is an order ideal in the effect algebra ( P ; % , 0,

1) derived from D-algebra ( P ; * , 0, 1) by (GED) (under # derived from
% ), and for a, b P P, a % P b is defined in P iff a % b is defined in P and

a % b 5 a % P b.

3. SUBALGEBRAS OF D-ALGEBRAS AND EFFECT ALGEBRAS

In view of the Sections 1 and 2 we may consider both a D-poset (P ;
* , 0, 1) and the derived effect algebra (P; % , 0, 1) (and conversely) as a set

P with 0, 1, # , * , and % satisfying all properties (Di)±(Dii), (Ai)±(Aiv),

and (Ei)±(Eiv), and also conditions (GEi)±(GEv), (GDi)±(GDvii), and

(GED), (GDF) are satisfied. On the other hand, a D-algebra with a fundamental

operation * and derived % and the (derived) effect algebra with the fundamen-
tal operation % and derived * are different from some algebraic points of

view, e.g., they have different sets of subalgebras.

Definition 3.1. (1) For a generalized D-algebra (P; * , 0) a set 0¤ Þ Q #
P is called a subalgebra if 0 P Q, and for all a, b P Q, if b * a is defined

in P, then b * a P Q.

(2) For a generalized effect algebra (P; % , 0) a set 0¤ Þ Q # P is called
a subalgebra if 0 P Q, and for all a, b P Q, if a % b is defined in P, then

a % b P Q.

For subalgebras of D-algebras and effect algebras we assume in addition

that 1 P Q.
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Example 3.2. Suppose that P 5 [ 0, 1] is the interval of real numbers

with usual # , 1 , and 2 . Let us define partial binary operations * and %
for all a, b P P as follows:

b * a is defined iff a # b, in which case b * a 5 b 2 a.

a % b is defined iff 0 # a 1 b # 1, in which case a % b 5 a 1 b.

Then (P; # , * , 0, 1) is a D-poset and (P ; % , 0, 1) is an effect algebra

(derived from the D-poset). Let Q 5 {0} ø [1±2 , 1]. Then (Q; % , 0, 1) is a

subalgebra of (P; % , 0, 1) but (Q; * , 0, 1) is not a subalgebra of (P; * , 0,
1) since 1 * 3±4 5 1±4 ¸ Q.

Moreover, for 3±4 , 1 P Q we have 3±4 # 1 in P, but 3±4 Ü 1 in Q, since there

does not exist a P Q with 3±4 % a 5 1. It also implies that (Q; * , 0, 1) is

not an effect algebra in its own right.

We can easily show the following:

(i) If (Q; # , * , 0, 1) is a subalgebra of a D-poset (P; # , * , 0, 1), then
it is a D-poset in its own right. Moreover, the partial order in Q is inherited

from P (i.e., for all a, b P Q, a # b in Q iff a # b in P).

(2) If (A; % , 0, 1) is a subalgebra of an effect algebra (E; % , * , 1),

then it need not be an effect algebra in its own right.

Example 3.3. The set R+ 5 [ 0, ` ) of nonnegative real numbers with
usual # , 2 , and 1 can be organized into a generalized D-algebra (R+; * ,

0) if we define for all a, b P R+:

b * a is defined iff a # b, in which case b * a 5 b 2 a. The operation

% derived from * on R+ is total. The set Q1 5 [ 0, 1] is a subalgebra of (R+;

* , 0), but it is not a subalgebra of (R+; % , 0). since 1, 1±2 P Q1, but 1 % 1±2 ¸
Q1. Moreover, e.g., Q2 5 {0} ø [1±2 , ` ) is a subalgebra of (R+; % , 0), but Q2

is not a subalgebra of (R+; * , 0). We see that (Q2; % , 0) with the operation

% inherited from (R+, % , 0) is a generalized effect algebra in its own right,

but the partial order in Q2 is not inherited from P. For instance, 3±4 # 1 in R+,

while 3±4 Ü 1 in Q2, since there is no a P Q2 with 3±4 % a 5 1.

The following proposition follows from Proposition 2.3.

Proposition 3.4. Let (P; % , 0) and (P ; * , 0) be a generalized effect

algebra and a generalized D-algebra derived one from the other. Let 0¤ Þ
Q # P. Then (Q; % , 0) and (Q; * , 0) with inherited operations are a general-

ized effect algebra and a generalized D algebra in their own right derived

one from the other and partial order in Q is inherited from P if and only if

the following condition is satisfied

(S) If from elements a, b, c P P with a % b 5 c (or equivalently c *
b 5 a) at least two are elements of Q, then a, b, c P Q.

For effect algebras and D-algebras we assume in addition that 1 P Q.
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Greechie et al. (1995) define a sub-effect algebra of an effect algebra

(E; % , 0, 1) as a subset F of E with properties (i) 0, 1 P F, (ii) a P F Þ
a8 5 1 * a P F, and (iii) a, b P F with defined a % b in E implies a %
b P F.

Proposition 3.5. (1) A set F # E with 1 P F is a sub-effect algebra of

an effect algebra (E ; % , 0, 1) iff F satisfies condition (S).

(2) A set Q # P with 1 P Q for a D-algebra (P; * , 0, 1) satisfies

condition (S) iff Q is a subalgebra.

Assertion (2) of Proposition 3.5 fails to be true for effect algebras
(Example 3.2).

Definition 3.6. A set Q # P is a sub-generalized effect algebra of a

generalized effect algebra (P, * , 0) if 0 P Q and Q satisfies condition (S).

4. INTERVALS AND IDEAL SUBALGEBRAS OF
GENERALIZED EFFECT ALGEBRAS

Definition 4.1. A subalgebra Q # P of a generalized effect algebra (P;

% , 0) is called an ideal subalgebra of P if it is an order ideal of P (i.e., x P
Q and y # x imply y P Q).

Note that every ideal subalgebra Q of a generalized effect algebra (P;

% , 0) satisfies condition (S); equally, for a, b, c P P if a % b 5 c, then c P
Q iff a, b P Q.

Suppose that (P; % , 0) is a generalized effect algebra. For any 0 Þ w P
P, the interval [ 0, w] 5 {x P P ) 0 # x # w }, under the partially defined
operation obtained by restriction of % to [ 0, w] (i.e., for a, b P [ 0, w], a %
b in [ 0, w] is defined iff a % b exists in P with a % b # w), is an effect

algebra with unit w. Evidently, for a, b P [ 0, w] the infimum a Ù w b in [ 0,

w] exists iff a Ù b exists in P. On the other hand, the supremum a Ú w b in

[ 0, w] may exist when a Ú b fails to exist in P. Nevertheless, if x Ú y exists

in P, then a Ú w b 5 a Ú b.

Proposition 4.2. If for elements x, y of a generalized effect algebra (P;

% , 0) there exist x % y and x Ú y, then x Ù y exists and

x % y 5 (x Ú y) % (x Ù y)

Proof. Let us put w 5 x % y and consider the effect algebra [ 0, w].

Then x Ú w y 5 x Ú y # w and w 5 x % y P [ 0, w]. Thus, by Theorem 3.5

of Greechie et al. (1995), (x Ú w y) % (x Ù w y) 5 x % w in [ 0, w]. Hence we

have (x Ú y) % (x Ù y) 5 x % w in P.

Corollary 4.3. In every lattice ordered generalized effect algebra (P; % , 0)
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a % b 5 (a Ú b) % (a Ù b)

for all a, b P P with defined a % b.

The following example shows that an interval in a generalized effect
algebra (P; * , 0) need not be a sub-generalized effect algebra of P and a

sub-generalized effect algebra of P need not be an ideal subalgebra of P.

Example 4.4. Let on the set P 5 {0, a, b, c, d } the partial binary

operation % be defined as follows: a % b 5 c, a % a 5 b % b 5 d, and

x * 0 5 x for all x P P. Then (P; % , 0) is a generalized effect algebra.

Evidently, a, b # c and a, b # d. Moreover, 0 # x for all x P P. The interval
[ 0, c] is an effect algebra with unit c, but it is not a sub-generalized effect

algebra of (P; % , 0) (even, [ 0, c] is not a subalgebra of P) since a % a ¸
[ 0, c]. On the other hand, if S 5 {0, a, d}, then (S; % , 0) is a sub-generalized

effect algebra of P which is not an ideal subalgebra of P.

Proposition 4.5. For a generalized effect algebra (P ; % , 0) and an interval
[ 0, w] ( 0 Þ w P P) the following conditions are equivalent:

(i) [ 0, w] is a subalgebra of (P ; % , 0).

(ii) [ 0, w] is a sub-generalized effect algebra of (P; % , 0).

(iii) [ 0, w] is an ideal subalgebra of (P; % , 0).

Proof. The statement follows from the fact that for x, y P P with x %
y defined we have x, y # x % y.

Definition 4.6. We say that an element w Þ 0 of a generalized effect

algebra (P; % , 0) has the property (IS) if for all x P P:

x Ù w exists and x 5 (x Ù w) Ú (x8 % (x Ù w))

Theorem 4.7. Let the element w Þ 0 of a generalized effect algebra (P ;

% , 0) has the property (IS). Then for every x P P:

(i) (x * (x Ù w)) Ù w 5 0.

(ii) If x % w is defined, then x Ú w and x Ù w exist and x Ú w 5 x %
w and x Ù w 5 0.

(iii) [ 0, w] is a sub-generalized effect algebra of (P; % , 0); hence [ 0,
w] is an ideal subalgebra of (P; % , 0).

Proof. (i) By (IS) x 5 (x Ù w) Ú (x * (x Ù w)) 5 (x Ù w) % (x * (x Ù
w)). It follows that (x Ù w) Ù (x * (x Ù w)) 5 0, using Proposition 4.2 and
the cancellation law. Thus w Ù (x * (x Ù w)) 5 0.

(ii) If x % w exists, then (x % w) Ù w 5 w and (x % w) * w 5 x and

hence x % w 5 w Ú x by (IS). In view of Proposition 4.2 and the cancellation

property we obtain x Ù w 5 0.
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(iii) Suppose that x, y P [ 0, w] with x % y defined in P. Then by (IS)

x % y 5 ((x % y) Ù w) Ú ((x % y) * (x % y) Ù w) # ((x % y) Ù w) Ú ((x
% y) * y) 5 ((x % y) Ù w) Ú x # w since y # (x % y) Ù w. Thus [ 0, w] is
a subalgebra of P. In view of Proposition 4.6 we obtain the statement (iii).

5. CENTRAL ELEMENTS OF GENERALIZED EFFECT
ALGEBRAS

In Greechie et al. (1995) the notion of a central element of an effect
algebra was introduced and the decompositions of effect algebras into direct

products of ideal subalgebras was studied.

A direct product of two generalized effect algebras (P1; % 1, 01) and (P2;

% 2, 02) is the generalized effect algebra (P ; % , 0), where P 5 P1 3 P2, the

partial binary operation % is defined coordinatewise, and 0 is the couple (01,

02). Obviously, the partial order in P is also defined coordinatewise. We can
easily see that P is an effect algebra iff P1 and P2 are effect algebras under

which 1 P P is the couple (11, 12) (see Proposition 2.5).

Definition 5.1. For a generalized effect algebra (P; % , 0) an element

z P P is called a central element iff for all x, y P P the following conditions

are satisfied:

(Ci) x Ù z exists and x 5 (x Ù z) Ú (x * (x Ù z)) [i.e., z satisfies (IS)].

(Cii) If x Ù z 5 0, then x % z is defined.

(Ciii) If x % y is defined and x Ù z 5 y Ù z 5 0, then (x % y) Ù z 5 0.

Theorem 5.2. Let z be a central element of a generalized effect algebra

(P; % , 0) and Qz 5 {x P P ) x Ù z 5 0}. Then [ 0, z] and Qz are ideal
subalgebras of (P ; % , 0). Moreover, [ 0, z] and [ 0, z*] are ideal subalgebras

of the effect algebra ( P ; % , 0, 1), where P 5 P ø Ç P* is obtained by Proposition

2.6 and Qz 5 [ 0, z*] ù P.

Proof. [ 0, z] is an ideal subalgebra of (P; % , 0) in view of Theorem

4.7. Let x, y P Qz with defined x % y. Then x Ù z 5 y Ù z 5 0 and by (Ciii)
also (x % y) Ù z 5 0. Hence x % y P Qz. Evidently Qz is an order ideal of

P. Thus Qz is an ideal subalgebra of (P; % , 0). By condition (Cii) and by

Theorem 4.7 we obtain Qz 5 P ù [ 0, z*]. Since [ 0, z] is an ideal subalgebra

of P and P is an ideal subalgebra of P , we conclude that [ 0, z] is an ideal

subalgebra of P .

Let us show now that [ 0, z*] is an ideal subalgebra of P . If x, y P [ 0,
z*] ù P with defined x % y, then x % y P Qz # [ 0, z*]. If x, y P [ 0, z*] ù
P*, then x % y is not defined, since x, y # x % y implies x % y P P* and

hence x 5 (x % y) * y P P (see Proposition 2.6), a contradiction. If x P
[ 0, z*] ù P, y P [ 0, z*] ù P*, and x % y is defined, then x # 1 * z, x #
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1 * y, and z # 1 * y. By Theorem 4.7, (ii) x % z 5 x Ú z and hence x %
z # 1 * y. It follows that (x % y) % z is defined and hence x % y P [ 0, z*].

In Greechie et al. (1995) an element z of an effect algebra (E; % , 0, 1)
is called central iff (1) for every x P E there exist u # z, v # 1 * z such

that x 5 u % v and (2) [ 0, z] and [ 0, 1 * z] are ideal subalgebras of E.

Theorem 5.3. An element z P P is a central element of a generalized

effect algebra (P; % , 0) iff z is a central element of the effect algebra ( P ;

% , 0, 1), where P 5 P ø Ç P* is obtained by Proposition 2.6.

Proof. (1) Suppose that z P P is a central element of (P; % , 0). If x P
P, then x 5 (x Ù z) % (x * (x Ù z)). By Theorem 4.7(i), (x * (x Ù z)) Ù z 5
0, and by the property (Cii) of central elements, (x * (x Ù z)) % z is defined.
Thus x Ù z # z and x * (x Ù z) # 1 * z. If x* P P*, then 1 * x* 5 x P
P and hence x 5 (x Ù z) Ú (x * (x Ù z)), where x * (x Ù z) # 1 * z. It

follows that x* 5 1 * x 5 (1 * (x * (x Ù z))) * (x Ù z) $ z * (x Ù z).
By Proposition 2.6, x* * (z * (x Ù z)) 5 (x % (z * (x Ù z)))* 5 ((x * (x Ù
z)) % (x Ù z) % (z * (x Ù z))* 5 ((x * (x Ù z)) % z)* # z* 5 1 * z. Thus

x* 5 (z * (x Ù z)) % (x* * (z * (x Ù z)), where z * (x Ù z) # z and x* *
(z * (x Ù z)) # 1 * z. By Theorem 5.2, [ 0, z] and [ 0, z*] are ideal subalgebras

of the effect algebra (P ; % , 0, 1). We obtain that z is a central element of

( P ; % , 0, 1).

(2) Suppose that z P P and z is a central element of ( P ; % , 0, 1). Then

( P ; % , 0, 1) is isomorphic to the direct product of effect algebras [ 0, z] and

[ 0, z*] (meaning with inherited operations % from P ) and x 5 (x Ù z) %
(x Ù z*) for every x P P (Greechie et al. 1995). It follows that x Ù z* 5
x * (x Ù z). By the definition of the Cartesian product we have also x 5 (x
Ù z) Ú (x Ù z*), for every x P P . We obtain that x Ù z 5 0 iff x P [ 0, z*]

is an ideal subalgebra of P , z satisfies also condition (Ciii) of Definition 5.1.

Theorem 5.4. An element z P P of a generalized effect algebra (P ; % ,

0) is central if and only if P is isomorphic to a direct product of [ 0, z] and

Qz 5 {x P P ) x Ù z 5 0} meaning with operations % restricted from P.

Proof. This follows by Theorem 5.3 and Greechie et al. (1995), using
the fact that if u P [ 0, z], v P [ 0, z*] are such that u % v P P, then v P P
by Proposition 2.6.

Theorem 5.5. An element z P E is a central element of an effect algebra

(E; % , 0, 1) iff for every x P E, x Ù z and x Ù z8 exist and x 5 (x Ù z) Ú
(x Ù z8).

Proof. (1) If z is a central element of E (in the sense of Greechie et al.,
1995) then for every x P E we have x 5 (x Ù z) % (x Ù z8) 5 (x Ù z) Ú
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(x Ù z8), in view of Greechie et al. (1995) and the definition of the Cartesian

product [ 0, z] 3 [ 0, z8].

(2) Suppose that for every x P E there exist x Ù z, x Ù z8, and x 5 (x Ù
z) Ú (x Ù z8). Then 1 5 z Ú z8. Since 1 5 z % z8, we obtain z Ù z8 5 0. It

follows that for every x P E there exists (x Ù z) % (x Ù z8) and (x Ù z) Ù
(x Ù z8) 5 0. Hence x 5 (x Ù z) % (x Ù z8), which implies that x Ù z 5 x
* (x Ù z8) and (x Ù z) Ú (x * (x Ù z)) 5 (x Ù z8) Ú (x * (x Ù z8)).

By Theorem 4.7, [ 0, z] and [ 0, z8] are ideal subalgebras of E. We conclude

that z and z8 are central elements of E in the sense of Greechie et al. (1995).
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